Skip to main content

civil engineering-->>Primary Treatment of Wastewater & Types of Primary Sedimentation Tanks

Primary Treatment of Wastewater & Types of Primary Sedimentation Tanks


  1. Primary treatment is often called clarification sedimentation or setting.
  2. This ‘unit operation’ where the wastewater is a allowed to settle for a period (≈2h) in a setting tank and so produce a somewhat clarified liquid effluent in one stream and a liquid-solid sludge (called primary sludge) in a second steam.

1. Objectives of Primary Treatment of Wastewater

  1. To produce a liquid effluent of suitably improved quality for the next treatment stage (i.e.) secondary biological treatment.
  2. To active a solids separation resulting in a primary sludge that can be conveniently treated and disposed of.

2. Benefits of Primary Treatment

The benefits of primary treatment include
  1. Reduction in suspension solids
  2. Reduction in BOD
  3. Reduction in the amount of waste activated sludge (WAS) in the activated-sludge plant.
  4. Removal of floating materials (oil and geese).
  5. partial equalization of flow rates and organic load.

3. Design Criteria for Primary Treatment Plants

Traditionally, the design criteria were
  • Basic overflow rate (surface loading m3/m2-d)
  • Depth
  • Surface geometry
  • Hydraulic retention time
  • Weir rate (m3/d-m)
The above criteria are physical and while they may be adequate for design of the tank they sues nothing about the performance and operation of the sedimentation process.
Therefore, additional parameters called performance criteria were established to monitor and improve the day-to-day performance and operation of the sedimentation process.
  • Influents flow rates and their variation (daily variation)
  • influent waste strength rates and its variation.
  • Recycle influent streams.
    • From activated – sludge or Septic.
    • Supernatants form sludge de watering.
    • Washings from tertiary filter processes.
 They check efficiency of removal.
Septic may have a BOD's value 30 times greater than municipal raw wastewater. Supernatants form anaerobic digestion process or filtrate back washing may also be very high in waste strength. As such the performance of a primary clarification is not solely dependent on influent flow variations.

Types of Sedimentation Tanks

3.1 Typical Primary Sedimentation Tank

3.1.1 Rectangular Horizontal Flow Tanks

These are most commonly used for primary sedimentation, since they
  • Occupy less space than circular tanks.
  • They can be economically built side-by-side with common walls.
  • The maximum forward velocity to avoid the risk of scouring settled sludge is 10 to 15 mm/s (06 to 09m/min or 2 to 3 ft/ min), indicating that the ratio of length to width l/w should referrals be about.
  • The maximum weir loading rate, to limit the influence of draw-down currents, is preferably about 300 m3/d-m, this figure is sometime increased where the design flow is great then 3 ADWF.
  • Inlets should be baffled to dissipate the momentum of the incoming flow and to assist in establishing uniform forward flow.
  • Sludge is removed by scraping it into collecting hoppers at the inlet end of the tank.
  • Sum removal is essential in primary sedimentation tanks because of the grease and other floating matter which is present in wastewater. The sludge serapes can return along the length of the tank a the water surface. As they move towards the outlet end of the bank, the flights then move the sum towards a skimmer located just upstream of the effluent weirs.

Comments

Popular posts from this blog

civil engineering-->> overview of arches

Arches An arch is an opening spanned by a collection of wedge shaped pieces ( voussoirs ) which stay in position by pressing in on one another. The joints between the pieces appear to radiate from some central point lying within the opening, and sometimes from points which lie outside, so every type of arch has a characteristic curvature. The simplest and visually most natural shape for an arch is the semicircle but many other designs have been used. How an Arch "Works" The central voussoir ( keystone ) is traditionally the last to be set into position to "lock" the whole thing into a strong and stable structure. A keystone is not always necessary, however; there may be a joint at the apex instead, as is common in Gothic arches.  Gravity tries to pull the keystone downwards, but the thrust is carried on either side by the voussoirs immediately flanking it. These in turn have their total thrust carried through the whole semicircle of pieces in a sideways direc...

civil engineering-->>Determinacy, Indeterminacy and Stability of Frames

Determinacy, Indeterminacy and Stability of Frames : Structural engineers must be able to apply judgment rather than stated rules. The most important aspect of structural design is not the ability to apply formulas or manipulate mathematics. The most important skill for the structural engineer is to be able to stand back, look at a drawing or sketch and determine whether a structure is stable, and if it is stable, to be able to determine how it will carry the applied loads. For a very complicated structure this might be more difficult and a computer can provide some help, but ultimately it is the skill and concern of a good structural engineer which produces good structural designs which have integrity. Another important closely related skill is the ability to determine whether, and to what degree, a structure is statically indeterminate. There really aren’t  many rules and rules may be difficult to apply in any case. For this reason, we need experience. A skilled structural...

civil engineering-->> truss types

                                                                                                                           Modified-Queen-Scissors                                                          Baby Barn and Shed Trusses                                                                        floor truss       ...