Skip to main content

civil engineering-->>Properties of Bitumen


Properties of Bitumen


  1. Adhesion: Bitumen has the ability to adhere to a solid surface in a fluid state depending on the nature of the surface. The presence of water on the surface will prevent adhesion.
  1. Resistance to Water: Bitumen is water resistant. Under some conditions water may be absorbed by minute quantities of inorganic salts in the bitumen or filler in it.
  1. Hardness: To measure the hardness of bitumen, the penetration test is conducted, which measures the depth of penetration in tenths of mm. of a weighted needle in bitumen after a given time, at a known temperature.
    Commonly a weight of 100 gm is applied for 5 sec at a temperature of 77 °F. The penetration is a measure of hardness. Typical results are 10 for hard coating asphalt, 15 to 40 for roofing asphalt and up to 100 or more for water proofing bitumen.
  1. Viscosity and FlowThe viscous or flow properties of bitumen are of importance both at high temperature during processing and application and at low temperature to which bitumen is subjected during service. The flow properties of bitumens vary considerably with temperature and stress conditions. Deterioration, or loss of the desirable properties of bitumen, takes the form of hardening. Resultantly, decrease in adhesive and flow properties and an increase in the softening point temperature and coefficient of thermal expansion.

    TEST ON BITUMEN

Comments

Popular posts from this blog

civil engineering-->> overview of arches

Arches An arch is an opening spanned by a collection of wedge shaped pieces ( voussoirs ) which stay in position by pressing in on one another. The joints between the pieces appear to radiate from some central point lying within the opening, and sometimes from points which lie outside, so every type of arch has a characteristic curvature. The simplest and visually most natural shape for an arch is the semicircle but many other designs have been used. How an Arch "Works" The central voussoir ( keystone ) is traditionally the last to be set into position to "lock" the whole thing into a strong and stable structure. A keystone is not always necessary, however; there may be a joint at the apex instead, as is common in Gothic arches.  Gravity tries to pull the keystone downwards, but the thrust is carried on either side by the voussoirs immediately flanking it. These in turn have their total thrust carried through the whole semicircle of pieces in a sideways direc...

civil engineering-->>Determinacy, Indeterminacy and Stability of Frames

Determinacy, Indeterminacy and Stability of Frames : Structural engineers must be able to apply judgment rather than stated rules. The most important aspect of structural design is not the ability to apply formulas or manipulate mathematics. The most important skill for the structural engineer is to be able to stand back, look at a drawing or sketch and determine whether a structure is stable, and if it is stable, to be able to determine how it will carry the applied loads. For a very complicated structure this might be more difficult and a computer can provide some help, but ultimately it is the skill and concern of a good structural engineer which produces good structural designs which have integrity. Another important closely related skill is the ability to determine whether, and to what degree, a structure is statically indeterminate. There really aren’t  many rules and rules may be difficult to apply in any case. For this reason, we need experience. A skilled structural...

civil engineering-->> truss types

                                                                                                                           Modified-Queen-Scissors                                                          Baby Barn and Shed Trusses                                                                        floor truss       ...