Skip to main content

civil engineering-->>What is Hydraulics?


What is Hydraulics?



Hydraulics deals with the study of fluids: their behavior, motion and interaction of fluids with other bodies. Technically fluids include liquids and gases, but from the perspective of Hydraulics in Civil Engineering the term fluid generally means a liquid and water in particular.



Hydraulics includes the study and analysis of fluids when in motion and stationary. The part of Hydraulics which deals with the study of static behavior and interaction of fluids is called as Hydrostatics; the part dealing with fluid in motion is called Hydrodynamics.



In Civil Engineering Hydraulics we study fluid properties and behavior in different civil engineering applications, such as, flow of water through canals for irrigation, flow through public supply pipelines and water drainage system. In Civil Engineering Hydraulics we also study the effect of static fluid, such as, the pressure and force exerted by water stored in dams on its walls.

Comments

Popular posts from this blog

civil engineering-->>Determinacy, Indeterminacy and Stability of Frames

Determinacy, Indeterminacy and Stability of Frames : Structural engineers must be able to apply judgment rather than stated rules. The most important aspect of structural design is not the ability to apply formulas or manipulate mathematics. The most important skill for the structural engineer is to be able to stand back, look at a drawing or sketch and determine whether a structure is stable, and if it is stable, to be able to determine how it will carry the applied loads. For a very complicated structure this might be more difficult and a computer can provide some help, but ultimately it is the skill and concern of a good structural engineer which produces good structural designs which have integrity. Another important closely related skill is the ability to determine whether, and to what degree, a structure is statically indeterminate. There really aren’t  many rules and rules may be difficult to apply in any case. For this reason, we need experience. A skilled structural eng

civil engineering-->>Asphalt Binder Modifiers

Asphalt Binder Modifiers Some asphalt cements require modification in order to meet specifications.  Asphalt cement modification has been practiced for over 50 years but has received added attention in the past decade or so.  The added attention can be attributed to the following factors (Roberts et al., 1996): Increased demand on HMA pavements .  Traffic volume, loads and tire pressures have increased substantially in recent years, which can cause increased rutting and cracking.  Many modifiers can improve the asphalt binder's stiffness at normal service temperatures to increase  rut  resistance, while decreasing its stiffness at low temperatures to improve its resistance tothermal cracking. Superpave asphalt binder specifications .  Superpave asphalt binder specifications developed in the 1990s require asphalt binders to meet stiffness requirements at both high and low temperatures.  In regions with extreme climatic conditions this is not possible without asphalt bind

civil engineering-->> overview of arches

Arches An arch is an opening spanned by a collection of wedge shaped pieces ( voussoirs ) which stay in position by pressing in on one another. The joints between the pieces appear to radiate from some central point lying within the opening, and sometimes from points which lie outside, so every type of arch has a characteristic curvature. The simplest and visually most natural shape for an arch is the semicircle but many other designs have been used. How an Arch "Works" The central voussoir ( keystone ) is traditionally the last to be set into position to "lock" the whole thing into a strong and stable structure. A keystone is not always necessary, however; there may be a joint at the apex instead, as is common in Gothic arches.  Gravity tries to pull the keystone downwards, but the thrust is carried on either side by the voussoirs immediately flanking it. These in turn have their total thrust carried through the whole semicircle of pieces in a sideways direc